Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peng-Wu Zheng ${ }^{\text {a* }}$ and Bing Zhao ${ }^{\text {b }}$

${ }^{\text {a }}$ School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi 330013, People's Republic of China, and
${ }^{\mathbf{b}}$ School of Chemical Engineering, Tianjin Univerity, Tianjin 300072, People's Republic of China

Correspondence e-mail:

nczhengpw@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.050$
$w R$ factor $=0.152$
Data-to-parameter ratio $=13.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
N, N^{\prime}-Bis(9-anthracenylidene)hydrazine

In the title compound, $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{~N}_{2}$, synthesized by the reaction of anthracene-9-carbaldehyde with hydrazine hydrate, the two independent molecules are each located on a centre of symmetry. Weak $\pi-\pi$ interactions between adjacent anthracene rings contribute to the stabilization of the crystal packing.

Comment

Recently, a number of azine compounds containing both a diimine linkage and $\mathrm{N}-\mathrm{N}$ bonding have been investigated in terms of their crystallography and coordination chemistry (Zheng et al., 2005a,b; Duan et al., 2005; Kundu et al., 2005; Kesslen \& Euler, 1999; Armstrong et al., 1998; Xu et al., 1997). We report here the crystal structure of the title compound, (I), in which two 9 -anthracylidene units are directly linked through the imine N atoms.

(I)

The asymmetric unit of (I) contains two half-molecules. Each molecule has an E, E configuration, possessing a crys-

Figure 1
Two independent molecules in (I), showing the atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level. Atoms labelled with the letters A and B are generated by the symmetry codes $(1-x, 1-y, 1-z)$ and $(1-x, 1-y, 2-z)$, respectively.
tallographically imposed centre of symmetry at the mid-point of the $\mathrm{N}-\mathrm{N}$ bond (Fig. 1). This configuration agrees with that commonly found in a number of azine compounds (Zheng et al., 2005a,b; Duan et al., 2005; Şengül et al., 2004, Liu et al., 2004). The $\mathrm{N}-\mathrm{N}$ bond lengths in the two molecules are 1.420 (3) and 1.383 (4) \AA. One of the $\mathrm{C}=\mathrm{N}-\mathrm{N}$ angles $\left[\mathrm{C} 15=\mathrm{N} 1-\mathrm{N} 1=111.7(2)^{\circ}\right]$ deviates significantly from the ideal $s p^{2}$ value of 120° as a consequence of repulsion between the nitrogen lone pairs and the adjacent $\mathrm{C}=\mathrm{N}$ bond. The two independent molecules adopt different conformations, as can be seen from the significantly different values of the dihedral angles between the anthracene ring and the linkage plane [3.0 (4) and 40.5 (4)]. The short intermolecular contacts $\mathrm{C} 2 \cdots \mathrm{C} 6^{\mathrm{i}}\left[3.561\right.$ (4) \AA] and $\mathrm{C} 16 \cdots \mathrm{C} 22^{\mathrm{ii}}[3.479$ (4) \AA] indicate weak $\pi-\pi$ interactions, which contribute to the stabilization of the crystal packing [symmetry codes: (i) $2-x, 1-y, 1-z$; (ii) $1-x, 2-y, 2-z]$.

Experimental

The title compound was synthesized by the reaction of anthracene-9carbaldehyde with hydrazine hydrate in refluxing ethanol (Liu et al., 2004). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a tetrahydrofuran solution.

Crystal data

$\begin{aligned} & \mathrm{C}_{30} \mathrm{H}_{20} \mathrm{~N}_{2} \\ & M_{r}=408.48 \\ & \text { Triclinic, } P \overline{1} \\ & a=10.198(3) \AA \\ & b=10.750(4) \AA \\ & c=11.222(4) \AA \\ & \alpha=75.111(5)^{\circ} \\ & \beta=65.663(5)^{\circ} \\ & \gamma=86.438(6)^{\circ} \end{aligned}$

$V=1082.0(6) \AA^{3}$
$Z=2$
$D_{x}=1.254 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.24 \times 0.20 \times 0.18 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.983, T_{\text {max }}=0.992$

Refinement

Refinement on F^{2}

$$
R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050
$$

$$
w R\left(F^{2}\right)=0.152
$$

$$
S=0.96
$$

3816 reflections
289 parameters

$$
\begin{gathered}
\text { H-atom parameters constrained } \\
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0773 P)^{2}\right] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.20 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=-0.26 \text { e } \AA^{-3}
\end{gathered}
$$

All H atoms were positioned geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge financial support from the Foundation for Excellent Young Teachers of Jiangxi Science and Technology Normal University.

References

Armstrong, J. A., Barnes, J. C. \& Weakley, T. J. R. (1998). Acta Cryst. C54, 1923-1925.
Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Duan, X.-M., Zheng, P.-W. \& Zhou, B. (2005). Acta Cryst. E61, o3449-o3451.
Kesslen, E. C. \& Euler, W. B. (1999). Chem. Mater. 11, 336-340.
Kundu, N., Chatterjee, P. B., Chaudhury, M. \& Tiekink, E. R. T. (2005). Acta Cryst. E61, m1583-m1585.
Liu, S. L., Chen, Y., Dai, J. F. \& Liu, H. W. (2004). Chin. J. Synth. Chem. 12, 219-221.
Şengül, A., Karadayi, N. \& Büyükgüngör, O. (2004). Acta Cryst. C60, o5070508.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Xu, Z., Thompson, L. K. \& Miller, D. O. (1997). Inorg. Chem. 36, 3985-3995.
Zheng, P.-W., Wang, W. \& Duan, X.-M. (2005a). Acta Cryst. E61, o3020-o3021.
Zheng, P.-W., Wang, W. \& Duan, X.-M. (2005b). Acta Cryst. E61, o3485-o3486.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

